- According to IEC/EN 60 947-4-2
- DC brake with one way rectified brake voltage
- Suitable foe all squirrel cage motors
- Easy to fit also in existing circuits
- Wear- and maintenance free
- To mount on 35 mm DIN rail
- Adjustable brake current to 80 A
- Adjustable braking time 1 ... 20 s
- 90 mm width

Function Diagram

Block Diagram

BI 9023 Device with $U_{H}=A C 400 \mathrm{~V}$

BI 9023 Device with $U_{H}=A C 230 \mathrm{~V}, 115 \mathrm{~V}$, DC 24 V

Connection Terminals
Terminal designation
L1
L2
T1
T2
Q1
Q2
Phase voltage L1
17, 18 28
A1, A2
Y1, Y2
A3+, A4

Indicators

Green LED: ON, when auxiliary supply connected
"ON": Flashing, when braking
Relais K1
Yellow LED: ON, when contact 17-18 closed
Relais K2
Yellow LED: ON, when contact 17-28 closed
„ERROR": Flashing, when contact 17-28 open
1*): Overtemperature on thyristor (internal)
6*): Wrong freqency
4^{*}): Voltage L1 - L2 missing
$\left.1-6^{*}\right)=$ Number of pulses in flashing sequence

Notes

The braking current is generated by phase control. The value is depending on the voltage connected to L1-L2, the current setting and resistance of the motor windings. It is therefore possible, that the current with full scale setting is much higher then the permitted max current.

To achieve the optimum braking effect, the braking current I_{B} should be $\max 1.8$ to 2 times the motor nominal current. This is the saturation current of the magnetic field necessary to brake. A higher current leads only to overheating of the motor. A better braking effect is achieved, when using 2 or more motor windings to brake. The permitted duty cycle is depending on braking current and ambient temperature.

Technical Data

Nominal voltage U_{N} :
Auxiliary voltage \mathbf{U}_{H}
Device with AC 400 V
(Standardtype):
Device with AC 115/230 V
DC 24 V :

Motor power
at 400 V :
Max. adjustable
braking current:

Fuse, superfast:
Braking voltage:
Braking time:
Back-EMF braking
time delay:
Power consumption
for control:

3 AC $200 \mathrm{~V}-10 \%$... $480 \mathrm{~V}+10 \%$

A1/A2, AC $400 \mathrm{~V},+10 \%,-15 \%$,
A1/A2, AC $115 \mathrm{~V},+10 \%,-15 \%$, bridge $\mathrm{A} 1-\mathrm{Y} 1$, bridge $\mathrm{A} 1-\mathrm{Y} 2$ A1/A2, AC 230 V, +10 \%, -15 \%, bridge $\mathrm{Y} 1-\mathrm{Y} 2$
A3/A4, DC $24 \mathrm{~V},+10 \%,-15 \%$, no bridge $50 / 60 \mathrm{~Hz}$

15 kW

60 A at 60 cycles / h and 20 s braking time, 80 A at 20 cycles / h and 20 s braking time $\leq 6600 \mathrm{~A}^{2} \mathrm{~s}$
DC 0 ... 90 V adjustable 1 ... 20 s

750 ms
2 VA

Relay Output

Contacts:

Thermal continuous current $\mathrm{I}_{\mathrm{th}}: 4 \mathrm{~A}$

Switching capacity

to AC 15
NO contact: 3 A / 230 V

IEC/EN 60 947-5-1

Electrical life:

to AC 15 at 3 A, AC 230 V
Short circuit strength max. fuse rating: Mechanical life:
1×10^{5} switching cycles
4 A gG/gL
IEC/EN 60 947-5-1

Technical Data

General Data

Temperature range:
Storage temperature:

Clearance and creepage

distances

rated impulse voltage /
pollution degree
Controlvoltage to auxiliaryvoltage, motor voltage: motor voltage / heat sink:

EMC

Electrostatic discharge:
HF-irridation:
Fast transients:
Surge voltages
between
wires for power supply: between wire and ground:
Degree of protection
Housing:
Terminals:
Vibration resistance:
Climate resistance: Wire connection
Load terminals:

Control terminals:

Wire fixing
Load terminals:

Control terminals:

Fixing torque
Load terminals:
Control terminals:
Mounting:
Weight:
$0 \ldots+45^{\circ} \mathrm{C}$
$-25 \ldots+75^{\circ} \mathrm{C}$

4 kV / 2
6 kV / 2

8 kV (air)
2 kV

1 kV
2 kV
IP 40
IP 20
Amplitude 0.35 mm
Frequency $10 \ldots 55 \mathrm{~Hz}$, IEC/EN 60 068-2-6
0/055/04 IEC/EN60068-1
$1 \times 10 \mathrm{~mm}^{2}$ solid
$1 \times 6 \mathrm{~mm}^{2}$ stranded ferruled
A current of 60 A or 80 A is permitted at a.m. duty cycles for $6 \mathrm{~mm}^{2}$ wiring $1 \times 4 \mathrm{~mm}^{2}$ solid or
1×2.5 stranded ferruled (isolated) or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled

(isolated)

DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3

Plus-minus terminal screws M 4 box terminals with self-lifting clamping piece
Plus-minus terminal screws M 3.5 box terminals with self-lifting clamping piece

1.2 Nm

0.8 Nm

To mount on 35 mm DIN rail 780 g

Dimensions
Width \mathbf{x} height x depth: $\quad 90 \times 85 \times 120 \mathrm{~mm}$

Standard Type

BI $9023 \quad 60 \mathrm{~A} \quad$ AC 400 V	$50 / 60 \mathrm{~Hz} 1 \ldots 20 \mathrm{~s}$
Article number:	0057302
Width:	90 mm

Variants	
BI 9023/100:	Braking time $1 \ldots 30 \mathrm{~s}$
BI $9023 / 200:$	Braking time $1 \ldots 30 \mathrm{~s}$
	Braking voltage $0 \ldots 40 \mathrm{~V}_{\text {eff. }}$

Ordering Example for Variants

Control Input

Opening the contact on terminals Q1 - Q2 enables the braking cycle, closing the contact will start the braking

Relay Outputs		
$\begin{aligned} & 17,18: \\ & 17,28: \end{aligned}$	Control of motor contactor Control of braking contactor	
Adjustment Facilities		
Potentiometer	Description	Initial setting
I_{Br} t_{Br}	braking current braking time	left end of scale middle of scale

Set-up Procedure

The braking time $t_{\text {Br }}$ is adjusted on the unit together with the braking current $I_{B r}\left(\max 1.8 \ldots 2 I_{N}\right)$. If the motor has stopped and is still humming, the braking current is too high or the braking time too long. Current and time has then to be adjusted accordingly.

To avoid damage of the unit the braking current should be verified with a moving coil or true RMS current meter.

Extended contactors must be equipped with protection devices (diodes, varistors, etc.).

Connection Examples

Basic circuit for standardtype
BI 9023 with $U_{H}=A C 400 \mathrm{~V}$

BI 9023 with $U_{H}=A C 230 \mathrm{~V}$

BI 9023 with $U_{H}=D C 24 V$

