
Technique d'installation / de surveillance

Relais de fréquence IK 9143, SK 9143 VARIMETER

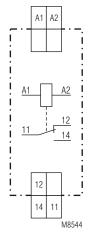


Diagramme de fonctionnement

Schéma

IK 9143, SK 9143

- Conformes à IEC/EN 60 255, DIN VDE 0435-303
- Détection des surfréquences et sous-fréquences dans les réseaux à tension alternative (par commutation)
- Sans tension auxiliaire
- Plage de fréquences commutable pour les réseaux 50 ou 60 Hz
- Seuil de réponse réglable
- Hystérésis réglable
- Principe du courant de repos (relais de sortie non activé en cas de défaut)
- DEL pour visualisation de la tension de mesure et de la position des contacts
- 1 contact INV
- Option principe du courant de travail (relais de sortie ativé en cas de défaut)
- 2 présentations possibles:

IK 9143: profondeur utile 58 mm et bornes vers le bas pour tableaux d'installation et industriels selon DIN 43 880

SK 9143: profondeur utile 98 mm et bornes vers le haut pour armoires électriques avec platine de montage et goulotte de câblage

Largeur utile17,5 mm

Homologations et sigles

Utilisation

Contrôle de la fréquence d'auto-installations et d'alimentations locales.

Présentation et réalisation

Le réseau à contrôler est raccordé aux bornes A1-A2 de l'appareil. Le relais y prélève également son alimentation en tension interne. La fréquence d'entrée est comparée à une valeur de réponse à régler sur l'appareil.

En mode surfréquence, le relais de sortie se met en position d'alarme au franchissement de la valeur de réponse préréglée. Si la fréquence réseau redescend au-dessous de la valeur d'appel minorée de l'hystérésis, le relais de sortie revient en position normale.

En mode sous-fréquence, le relais de sortie se place en position d'alarme au-dessous de la valeur de réponse préglée. Si la fréquenc réseau remonte au-delà de la valeur de réponse majorée de l'hystérésis, le relais de sortie revient en position normale.

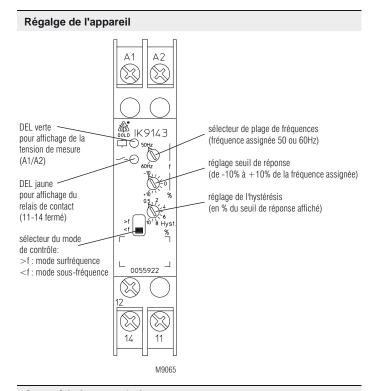
En principe de courant de repos (11-14 fermé) le relais de sortie appelé correspond à l'état normal.

En principe de courant de travail (11-14 fermé) le relais de sortie appelé correspond à l'état d'alarme.

Affichages

DEL verte: allumée en présence de tension de

mesure sur A1-A2


DEL jaune: allumée quand le relais de sortie a

répondu (contacts 11-14 fermés)

Remarques

Mode de contrôle en surfréquence ou sous-fréquence.

La commutation s'effectue par le bouton coulissant à l'avant de l'appareil. Le principe du courant de repos ou de travail du relais de sortie est maintenu, de même que la valeur de réponse.

Caractéristiques techniques

Entrée

AC 110, 230, 400 V Tension assignée U_N: Plage de tensions: 0,8 ... 1,1 U_N

Consommation nominale AC 110 V:

3 VA AC 230 V: 5 VA AC 400 V: 8 VA

Plage de fréquences: 50 / 60 Hz, réglable par curseur

Seuil de réponse réglage linéaire: - 10 ... + 10 % de la plage de fréquences sélectionnée

Hystérésis

réglage linéaire: 0,5 ... 10 % de la valeur de réponse

sélectionnée

Sortie

Garnissage en contacts

IK 9143.11, SK 9143.11: 1 contact INV 4 A

Courant thermique I_{th}: Pouvoir de coupure

en AC 15

contact NO: 3 A / AC 230 V IFC/FN 60 947-5-1 contact NF: 1 A / AC 230 V IEC/EN 60 947-5-1 en DC 13

1 A / DC 24 V IEC/EN 60 947-5-1 contact NO: contact NF: 1 A / DC 24 V IEC/EN 60 947-5-1

Longévité électrique

en AC 15 sous 1 A, AC 230 V: > 1,5 x 105 manoeuvresIEC/EN 60 947-

5-1

Tenue aux courts-circuits,

calibre max. de fusible: 4 A aL IEC/EN 60 947-5-1

Longévité mécanique: ≥ 30 x 10⁶ manoeuvres

Caractéristiques générales

Type nominal de service: Plage de températures: Distances dans l'air et lignes de fuite Catégorie de surtension /

service pemanent - 20 ... + 60°C

4 kV / 2 degré de contaimnation:

IEC 60 664-1

Caractéristiques techniques

Décharge électrostatique: 8 kV (dans l'air) IEC/EN 61 000-4-2 Tensions transitoires: 2 kV IEC/EN 61 000-4-4 Surtensions

IEC/EN 61 000-4-5 entre câbles d'alimentation: 1 kV Antiparasitage: seuil classe B EN 55 011

Degré de protection

IP 40 boîtier: IEC/EN 60 529 bornes: **IP 20** IEC/EN 60 529 **Boîtier:** thermoplastique à comportement V0

selon UL Subject 94 Résistance aux vibrations: amplitude 0,35 mm

fréquence10 ... 55 HzIEC/EN 60 068-2-6 IEC/EN 60 068-1

Résistance climatique 20 / 060 / 04 Repérage des bornes: EN 50 005

Connectique: 2 x 2,5 mm² massif

ou 2 x 1,5 mm² multibrins av. embout

DIN 46 228-1/-2/-3

Fixation des conducteurs: Bornes plates avec plaque de

> serrage IEC/EN 60 999-1 sur rail IEC/EN 60 715

Fixation instantanée: Poids net

IK 9143: ca. 65 g SK 9143: ca. 83 g

Dimensions largeur x hauteur x profondeur

IK 9143: 17,5 x 90 x 58 mm SK 9143: 17,5 x 90 x 98 mm

Version standard

IK 9143.11 $50/60 \text{ Hz} \pm 10\%$ AC 230 V Hyst. 0,5 ...10 %

0055922 Référence:

Principe du courant de repos

Commutation de mode: surfréquence ou sous-fréquence

Plage de fréquences

50 / 60 Hz commutable: Seuil de réponse: réglable ± 10 % Tension assignée U,: AC 230 V

 Hvstérésis: réglable de 0,5 à 10 %


 Largeur utile: 17,5 mm

Variantes

IK 9143.11/001.

SK 9143.11/00: avec principe du courant de travail

Exemple de commande des variantes

